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The method of matched asymptotic expansions is used to study a contact problem for a system consisting of a large number of 
small punches situated along a given curve on the boundary of an elastic half-space. The cases of cylindrical punches (the linear 
problem) and spherical punches (the structurally non-linear contact problem) are considered. In the linear case the reduced 
logarithmic capacity of the contact area is shown to possess the property of monotonicity and its asymptotic behaviour is 
determined. The resultant integral equations for the average density of linear pressures are derived. © 2004 Elsevier Ltd. 
All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  L I N E A R  C O N T A C T  P R O B L E M  

Let F be a simple smooth closed curve of length 2/in the (xl, x2) plane. Let (s, n) be a local system of 
coordinates introduced in its neighbourhood, where s is the length of the arc and n is the distance (taking 
the sign into account) along the interior normal. Let N be a large natural number and let e = 1/N be 
a small parameter. Let c01 denote a domain in the plane of "expanded" coordinates ({1, ~2) contained 
in a disk of radius l, and let m2 be the domain obtained from co 1 by N-fold contraction. We define a 
periodically varying narrow set along the contour F by 

(1.1) 

In other words, F(e) is the union o f N  pairwise disjoint domains m~ (j = 0, 1, . . . ,  N -  1) of small diameter 
(of order of magnitude 2v_/) that have the form of the domain m~ in local coordinates. 

The contact problem of a punch with flat base F(e) pressed without friction into an elastic half-space 
x3 --- 0 (with Young's modulus E and Poisson's ratio v) reduces via the Papkovich-Neuber representa- 
tion [1] to the problem 

Ax(D(X ) = 0, X 3 < 0; O3q)(x) = 0, x 3 = 0 (x l ,x 2) ~ F(e) (1.2) 

(P(X1, X2, 0)  ---- -- ~0--  132Xl "4- [~lX2 (Xl, X2) E r(Fo) (1.3) 

qo(x) = o(1), Ix] = (x~ + x~ + xZ3)x'2---~oo (1.4) 

where 80 and 131, 132 are the translational displacement and angles of rotation of the punch F(e) relative 
to the horizontal coordinate axes, and 23 = ~/Ox3. 

The pressure exerted on a semi-infinite elastic body by the punch is computed from the formula 

2 -1 
p(xl, x2) = -E[2(1 - V )] 83q)(Xl, X2, 0) (Xl, X2) E F(E) (1.5) 

An asymptotic analysis of the contact problem has been constructed for a system of punches densely 
situated within a bounded area on the surface of an elastic half-space [2]. In this paper the singularly 
perturbed contact problem (1.2)-(1.4), corresponding to the case of a chain of punches situated along 
a given curve, is averaged by a method developed by Nazarov [3]. The distinctive feature of this problem 
is the need to use the method of matched asymptotic expansions (see [4-6], etc.) instead of the method 
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94 I.I .  Argatov 

of composite asymptotic expansions [7], which was used previously [3] when deriving the problem for 
a boundary layer. 

2. C O N S T R U C T I O N  OF AN A S Y M P T O T I C  F O R M  IN T H E  L I N E A R  
C O N T A C T  P R O B L E M  

At a distance from the contact area F(e), the function ~p(x) may represented for the most part as a simple 
layer potential, whose density is spread over the contour F, 

V(~'; x) = - 1  1 ~(t)dt (2.1) 
2nr  J (x  , _ f l ( t ) )  2 + (X 2 2 fz( t ) )  2 + X3 2 

where dt is the element of arc length and the equations xl = fl(t), x2 = f2(t) define a natural 
parameterization of the contour F. (To fix our ideas, we shall assume that when F is described in the 
sense of increasing coordinate s, the domain bounded by the contour 17 remains on the left). The function 
~s)  has to be defined. The quantity E[2(1 - vZ)]qy(s) -- P(s) has the meaning of the average linear contact 
pressure. 

In planes normal to F we introduce polar coordinates (r, q0) so that n = rcosq0, x3 = rsinq0, (p 
I-n, 0]. On the assumption that the function ~/is continuously differentiable, the following formula holds 
as r --+ 0 (see, e.g., [8]) 

I)(~/; s, r, Ip) = ~(ln~l-JO(s))-l(J~[)(s)+O(rln(kmr)) (2.2) 

where km is the maximum curvature of the contour F, and we have also introduced the notation 

s+l 
1 J°(s) = 2 I (R°(s' t)-I - I s -  t[-')dt 

s - l  

(2.3) 

1 fV(t) - Y(S)dt 
F 

R o ( s , t )  = [ ( f l ( s ) - f l ( t ) )  2 + ( f 2 ( s ) - f 2 ( t ) ) 2 ]  112 

(2.4) 

The function of two variables Ro(s, t) defines the difference between two points on F with coordinates 
s and t, and moreover 

eo(s,t) = Is- t l (1  +O(k2ls-tl2)), t--+s (2.5) 

In the neighbourhood of the contact area F(~) one has a boundary-layer effect, that is, the solution 
q0(x) of problem (1.2)-(1.4) shows characteristic sharp variations in a small neighbourhood of the narrow 
set F(e). A function w(s; {J) of the boundary-layer type describing this behaviour of the solution of the 
initial problem depends both on the "slow" variable s and on expanded coordinates 

+ + - ,  J / 
(~1' ~2' j2lN-' (2.6) = "~3 = e ( s - s e ,  n, x3);  se = 

Following the algorithm described previously in [3], we arrive at the equation 

A w(s ; = o, < o; I ,1 < z (2.7) 

in a half-layer of thickness 2l. From now on, the superscriptj in the symbol {J will not be written, since 
there is no difference between the equation s comprising the problem for a boundary layer for different 
values ofj. Moreover, the discrete variable s~ ~ {j2e/, j = 0, 1, . . . ,  N -  1} will be replaced by a continuous 
parameter s e [0, 2/). 

According to Eqs (1.2) and (1.3), the function w(s; ~) must satisfy the boundary conditions 

~3(S;  ~) = O, ~3 -- O, (~1'~2) ~ < l  ~1, (2.8) 
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W(S; ~1' ~2' 0) = W0(S), (~1' ~2) t~ O)I (2.9) 

where we have introduced the notation 

Wo(S ) = - 8 0 -- ~2f l (S)  + ~afz(s) (2.10) 

In addition, the following compatibility conditions must hold 

~w 3w 
w(s; -I, ~2, ~3) = W(S; l, ~2, ~3)' -ff'ff"(S; -l, ~2, ~3) = ~-ff"(S; l, ~2' ~3), ~3 < 0 

Obl obl 
(2.11) 

Finally, in view of the asymptotic formula (2.2), the matching condition for the inner asymptotic 
representation w(s; ~) and the outer one v(T, x) defined by formula (2.1) leads to the following asymptotic 
condition at infinity 

7(S)(lneP- J°(s))-l(JT)(s ) + O(p-l), [3 ---~ oo (2.12) w(s; ~) = ---Y-t ~7 

where we have introduced the notation 9 = q{2 + {2, with p = Ulr, r being the distance to the contour 
F. Note also that the coordinate s occurs in (2.9) and (2.12) as a parameter. 

Given the solution w(s; ~) of problem (2.8)-(2.12), the contact pressure under the punch base o)~ in 
expanded coordinates is calculated using the formula (see formulae (1.5) and (2.6)) 

E l bW.(s; j j j j 
p(xl,  x2) = 2(1 _ v 2 ) e ~  ~ ~1,~2,0) (~1, ~2) E o) 1 (2.13) 

3. THE L O G A R I T H M I C  CAPACITY OF THE C O N T A C T  A R E A  

An existence and uniqueness theorem has been proved [3] for the solution e(~) of the homogeneous 
problem (2.7)-(2.10), which goes to infinity as - ln 9. The constant in the asymptotic formula 

e(~) = - lnp + ~l + O(P-1), P ~ ,,o (3.1) 

is related to the so-called reduced logarithmic capacity Clog(O)1) of  the set {{:~3 = 0, ({1, ~2) E O1} [3] 
by the formula 

Clog (o)a) = exp(~l )  (3.2) 

According to the maximum principle for harmonic functions (see, e.g., [9]), the following relations 
hold 

~3[ .q l  g2 0--) > 0, (~1, ~2) E O)I (3.3) 

e(~l, ~2, 0) < 0 (~1, ~2) ~ ~l ,  [~l[ < l (3.4) 

In addition, by applying Green's formula it can be shown that 

~n/S r be .. J b--~3(~l, ~2, 0-)d~ld~2 = 1 (3.5) 
CO l 

It has been shown [3] that a unique bounded solution of problem (2.7), (2.8), (2.11) exists that satisfies 
the inhomogeneous boundary condition 

W(S; ~1' ~2' O) = Wo(S ; ~1' ~2) (~D ~2) E O)I 

and admits of an asymptotic expansion 

w(s; ~) = cO(s) + O(p-1), 10 ~ oo (3.6) 
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Under  these conditions the quantity c°(s) in formula (3.6) may be expressed, using the Maz'ya-  
Plamenevskii method [10], as follows: 

1 D e  , , cO(s) = 2--~-}I I WO(S; ~1'~2)~3(~1 ~20- )d~ ld~2 (3.7) 

Let  us consider two domains, 00~ and 00~, in the strip I ~11 < I, one of which contains the other, that 
is, 00~ C 00~, where the area of the set o~\@is positive. Their reduced logarithmic capacities satisfy the 
inequality 

Clog (00'1) < Clog (001) (3.8) 

Indeed, consider the solution e'(~) and e"(~) of the problems (2.7)-(2.11) which increase at infinity as - ln  9 and 
satisfy Dirichlet boundary conditions (2.9) given on the domains ¢0] and ¢o~. The difference w(~) = e"(~) - e'(~) 
satisfies the Laplace condition (2.7), the periodicity conditions (2.11), and the following relations 

w(~ ,  ~2, o) = o, (~ ,  ~2) ~ 0~'~ 

w(~,  {2, o) = -e ' (~,  ~2, 0), (~ ,  {2) e o;~'\o;~ 

33(~1 ' ~2' O) ---- O, (~1' ~2) ~ 0)~, 1 ,1 < z 

vv v - I  
w(~) = ' ~ l - ~ l  +O(p ), p ~ , ~  

By formula (3.7), we have 

,, , 1 ~ge" 
K1 -1~1 2rtl I I e'(~l' ~2' = 0)~-~(~l, ~2, O-)d~ld~2 

~','m', 
(3.9) 

Bearing in mind inequality (3.3) for the normal derivative of the function e"({) and inequality (3.4) for the 
boundary values of the function e'({), we deduce from Eq. (3.9) that K~ - n{ > 0, whence the required inequality 
(3.8) immediately follows. 

Note that since, by construction, the domain 001 is contained in the square 1~11 < 1, 1~21 < l, the 
estimates 

~:1 < In(l/2), Clog (001) < I/2 

follow from consideration of the two-dimensional problem. 
The domain (ol is the contact area in expanded coordinates (2.6). Therefore, as the logarithmic capacity 

of the actual contact area c% obtained by compressing the domain o01 by a factor of 1/~, we must put 
Clog (00E) ---- EClog (C01)" 

4. T H E  I N T E G R A L  E Q U A T I O N  F O R  T H E  A V E R A G E  D E N S I T Y  OF 
L I N E A R  P R E S S U R E S  

The solution of boundary-layer problem (2.7)-(2.12) may be represented in the form 

W(S; ~) = - 5  0 - ~2fl(S) + ~lf2(s)  -~-lqt(s)e(~) (4.1) 

The harmonic function (2.8) exactly satisfies the boundary conditions (2.8), (2.9) and the periodicity 
conditions (2.11). By formula (3.1), we obtain 

w(s; ~) = Wo(S) - ~ - 1 7 ( s ) [ -  lnp + lq] + O(p-l),  p --~ oo (4.2) 

Now, equating terms O(1) in expansions (4.2) and (2.12), we arrive at the equation 
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7 ( S ) ( l n ~ _  jO(s)l_.__(jT)(s) = ,  1 w (s) y(s)~ 
~ k .  2l ] rc o - 7 1  

whence, in view of the notation (2.10) and (3.2), we deduce 

( 2l ) 
7(s) l n ~ c l o ~ l  ) + J°(s) + (Jy)(s)  = -gWo(S ) (4.3) 

The properties of the operator J defined by formula (2.4) were studied in [3, 11]. In particular, it has 
been shown ([3], Lemma 3) that the operation J ° l  + J has a discrete spectrum which clusters to --~, 
its eigenvalues satisfying the asymptotic relation )~k = - l n k  + O(1) as k ~ ~ .  Equation (4.3) is therefore 
not available for all right-hand sides if the value of the parameter e is such that ln[eClog (c01)/(2/) + 
)~k = 0. Accordingly, for an infinitesimal sequence {ek} the required density Y cannot generally be 
determined directly from Eq. (4.3). 

Various constructions of an asymptotic solution of the resultant equation (4.3) have been proposed 
[12, 11, 3] to overcome this difficulty; these constructions also yield constructions of the asymptotic 
behaviour of the solution of the initial problem (1.2)-(1.4). A modification of the matching procedure 
proposed in [13] yields a rigorously solvable resultant integral equation for the density 7(@ 

Following the approach described in [13], we apply a coordinate transformation inverse to (2.6) in 
Eqs (4.1) and (4.2), and match the outer and inner asymptotic representations (2.1) and (4.1) of the 
function q0(x). The principal terms of the asymptotic expansions of the functions v(7;, s, r, q~) (as r -~ 0) 
and w(s; Ul(s - s/), e-in, e-ix3) (as e-lr --~ ~ )  are identical. In the matching domain, where r/l = 0('[~) 
as e --~ 0, the asymptotic relation 

W(S; E-I(s sj), E-I -1 - n, e x 3 ) -  l)(T; s, r, ~p) = o ( 1 )  (4 .4)  

transforms, in accordance with the asymptotic formula (4.2), to 

.. , 1 f T(t)dt r ,fie, E--~O (4.5) Wo(S ) + ]t(s) In r 
EClog(O)l) -v 2---~JFRr(S, t-------3) - O(1), 

where 

Rr(s , t) 2 = Ro(s, t )  2 + r 2 - 2rcos~p{f~(s)[f l(s)  - f l ( t ) ]  - f ' l (s)[f2(8) - fz( t )  l } 

Obviously, substitution of expansion (2.2) into (4.5) again leads to Eq. (4.3). In other words, the left- 
hand side of Eq. (4.5) turns out to be small in the matching zone, if it is equated to zero beneath the 
base of the punch at a depth ~/~l, that is, at q~ = 0 and r = "/~l. In this way one arrives at the equation 

y(s)ln k . 1 f y(t)dt ~- - j  . . . . . .  ~Wo(S) (4.6) 
" f E C l o g ( C O l )  2r~Ro(s  , 0 2 + E / 2  

Recalling the notation s = 1/N and P(s) = E[2(1 - V2)]-l]t(S), we can rewrite Eq. (4.6) in the final form 

2P(s)ln 4rNl + = -  I P ( t )d t  rCE2wo(s) (4.7) 
Clog(C01) rJRo(s , t )2+( lZ/N)  1 - v  

By following, for example, the scheme employed in [13], it is not difficult to prove an existence and 
uniqueness theorem of the solution of integral equation (4.7) for any sufficiently large values of the 
parameter N. 

5. T H E  A S Y M P T O T I C  F O R M  OF T H E  R E D U C E D  L O G A R I T H M I C  
C A P A C I T Y  

It was shown in Section 3 that the reduced logarithmic capacity qog(ml) is a monotone functional of 
the domain co 1. We shall now determine the asymptotic form of the quantity Clog(0~l) as the diameter 
of 0~1 tends to zero. 
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Let g denote a small positive parameter, and let us introduce the set 

COl~ = {({1,~2): g-l(~l,~2) ~ c°1} 

Let us determine the asymptotic form as ~ ~ 0 of the solution eN(~) of the problem, consisting of Eq. 
(2.7), the boundary conditions 

be.  
~3(~)  = O, ~3 = O, (~1' ~2) ~ f'Dg' I~ll < l 

% ( ~ 1 , ~ 2 , 0 )  = 0 ( ~ p ~ 2 )  e o N 

the periodicity conditions (2.11) and the asymptotic condition (3.1). 
We shall use the method of matched expansions and introduce expanded coordinates 

4 = ~1'-1~ (5.1) 

(On changing to the coordinates (5.1) the parameter ~t is eliminated from the equation of the boundary 
of the domain coN. ) 

Let Y(4) and cl denote the capacity potential and harmonic capacity of the set {4:43 = 0, (41, 42) 
@} (see, e.g. [14]) 

A;Y(4 ) = 0, 43 < 0; Y(41, 42, 0) = 1. (41, 42) e (I) 1 

bY 
_'_~"7-(4) = O, 43 = 0 (41' ;2) ~ 0)1 
o~3 

We have 

Y(4) = c1141-1 + o(141-2), 141 + oo (5.2) 

and the following integral representation holds 

1 bY 
Cl = 2-~I I ~"-~3 (41' 42, 0-)d41d42 

ot 
(5.3) 

Since by formula (3.5) the function eN(~) must satisfy the equality 

1 = f ~ f g  I o~b-~3~3 'tt([£-141' ~1"-142' 0-)d41d42 
0)! 

the inner asymptotic representation of eN({), valid in the neighbourhood of the domain CON, is taken to 
be the function 

w(4)  = ~t-~c (Y(4)-  1) (5.4) 

In view of formula (5.2), the following expansion holds as ] 41 ~ o~ 

~W(4) = l _1+[.~+O(14[ -z) (5.5) 

As outer asymptotic representation, which is supposed to approximate the unknown function eN({) 
far from the origin, we take the sum 

ng 
1 21 °V({) = .~ ~ f(k;{)+Ag; f (k ;{ )  = (5.6) 

k=-n~t J (~a -  2k/) 2+ {~ + {~ 
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where ng is a large natural number, which depends on the parameter B, andA~t is a constant. Note that 
the residual left by the function (5.6) in the second matching condition (2.11) is the smaller the greater 
the number ng. 

In order to match the outer asymptotic representation (5.6) with the inner one (5.4), let us determine 
the asymptotic form of the function ~F(~) as ~ o. The function (5.6) admits of the expansion 

1 l °1t'(~) = ~l + S(nv') + An + 0(1{12); S(%) = ~_, ~: 
k=l 

Changing here to expanded coordinates (5.1), we obtain 

l ~(g~) = ~ 1  + S(nrt) + A~t + O(g2l~l 2) (5.7) 

We now associate the two expansions (5.7) and (5.5) with the same function e~t(~) in the matching 
zone, where the number ] ~ I/1 turns out to be of the order of g-1/2 as Ix --+ 0. Thus, the terms on the 
right of the expansions (5.7) and (5.5) will be entirely identical if we set 

l 
A~t - S(n~t) (5.8) 

~t¢ 1 

Substituting expression (5.8) into formula (5.6), we have (the prime means tha t j  ~ 0) 

ng 

l ~ + ~  ~ '  f ( k ; ~ ) - ~ l  ~'(~) = I~1 ~ c ~  "<:-". 
(5.9) 

We can now let the parameter ng in the sum (5.9) tend to infinity, since the resulting series is convergent 
(by the Cauchy integral test). 

Thus, the final candidate for constructing the outer asymptotic representation of the function eg(~) 
is the function (5.9) when n~t = oo. 

We will now proceed to ascertain the behaviour of this function as P = ~U~2 + ~2 3 -~ oo. It is clear 
that if [~1i < l, t hen f ( ik ] ;  ~) > f ] k [  + 1; ~). We thus have the estimates 

n n n 

I f ( t ;  g)dt + f(n; g)< Z f(k; ~)< Sf(t; ~)dt + f(1; ~) 
I k=l 1 

Hence it follows that 

n n 

£ f(k;  ~) = Sf(t; ~)dt+Rn(~) , Rn(~) e ( / (n ;  ~ ) , / (1 ;  ~)) (5.10) 
k = l  1 

On the other hand, the following expansion is well known (see, e.g. [15, Ch. 8, Section 3]) 

n 
n 1 dt 

S(n) = Z k = 1 7  + C +  O(n-1), n--+oo (5.11) 
k = l  1 

where C = 0.577 ... is Euler's constant. 
Combining relations (5.10) and (5.11) and letting n -~ ~ ,  we obtain 

= 

k=l 1 

Thus, the function (5.9) admits of the following asymptotic expansion when n~t = oo. 

V'(~) = - In 9, l C + O(pq) ,  p -.+ oo 
14l lael 

(5.12) 
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whence we obtain the following asymptotic formula for the constant ~¢u in expansion (3.1) of the function 

~¢~ = l n ( 4 / ) - - J - / - C + o ( 1 ) ,  g---)0 (5.13) 
gel 

We thus arrive at the final result 

( l - C ) ( l + o ( 1 ) ) ,  g---)O (5.14) Clog (c%) = 4/exp - gc---~ 

It can be shown that the remainders in asymptotic formulae (5.13) and (5.14) estimated as o(1) are 
actually O(g2). 

6. FORMULATION OF THE STRUCTURALLY NON-LINEAR 
CONTACT PROBLEM 

Let us imagine that along the contour F there are N spherical punches of radius R, linked together by 
a rigid ring, as defined by the equations 

X 3 = ¢~j (X l ,  X2), j = 0, 1 ... . .  N -  1 (6.1) 

j 2 
(I)j(X 1, X 2) = ( 2 R ) - I [ ( x 1  - f l ( s J ) )  2 + (x  2 - f 2 ( s E ) )  ] (6.2) 

It is natural to assume that the radius R is comparable with the distance between adjacent punches, 
which is a quantity of the order of l/N for large values of N. We shall assume in addition that each of 
the punches is displaced by a distance that is small compared with the radius R. The displacement of 
the punches are determined by the displacement of the ring, which is characterized by the following 
parameters: ~0 is the translational displacement of the ring in the opposite direction to that of the vertical 
axis Ox3, and 151 and ~2 are the angles of rotation of the ring about the horizontal coordinate axes Oxl 
and Ox2. Letting ~ = 1/N denote, as before, a small parameter, we specify the previous assumptions as 
follows: 

2 , = 
~0 = E ~ 0 '  15i E215/*, i = 1, 2; R = eR* (6.3) 

where the quantities 8~, 15~, 15~ and R* are comparable with the quantity l as ~ ---) 0. 
By the Papkovich-Neuber representation, the contact problem for the above system of punches 

pressed without friction into the elastic half-space x3 < 0 reduces to the problem for the potential ¢p(x) 
comprising Eqs (1.2) and (1.4) and the boundary conditions of unilateral contact (see [1@ and also 
[17, 18], etc.) 

(p(X) --< ' -  ~0 -- 152Xl 4" [~lX2 4" (I)j(Xl, X2) , ~33(X)  --< 0 

[(p(X) 4. 5 0 "4" 152Xl -- 151X2 -- CI~j(Xl, X2)]~33(X ) = 0 (6.4) 

X3 = 0 (XI, X2) E O) { ( j = 0 ,  1 ..... N - l )  

where co~ is a domain that surely covers the contact area beneath thejth punch. Since there is certainly 
no contact wherever the punch surface is situated above the level of the unperturbed boundary of the 
elastic base, we can put 

= { (Xm, x2): 80 + 152xl - 15 x2 -  j(Xl, x2) > O} 

Under these conditions, due to (6.3), the diameter of the domain co j turns out to be 0(~3/2l) and is small 
compared with the distance between punches. 
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In order to construct the principal terms of the asymptotic expansion of the solution of the above 
problem in explicit form (to simplify certain arguments when deriving the unilateral contact problem 
for the boundary layer), expression (6.2) is replaced by the asymptotically equivalent expression 

~ j ( X  1, X2) = ( 2 R )  -1 [ ( s  - s~) 2 + n 2] (6.5) 

where s and n are local coordinates in the neighbourhood of the curve F, and s~ is the coordinate of 
the vertex of the punch, defined by the third formula of (2.6). 

7. THE C O N S T R U C T I O N  OF AN A S Y M P T O T I C  FORM OF THE 
S T R U C T U R A L L Y  N O N - L I N E A R  CONTACT PROBLEM 

The outer asymptotic representation (2.1) is left unchanged, since far from the punches the distinctive 
features of their bases are levelled out. As before, the density y(s) is assumed to depend on the parameter 
e, but this will not enter in the notation. 

The problem for the boundary layer comprises the Laplace equation (2.7), the periodicity condition 
(2.11) and the following boundary condition of unilateral contact, obtained from condition (6.4) by 
considering expression (6.5) 

2 , ~W 
W(S; ~) <-- E W 0 (S) + g( I I* (~ l ,  ~2 ) '  ~ ' -~(S ,  ~)  _< 0 

(7.1) 
2 , ~W [W(S; ~) g Wo (S) ~ * ( ~ l '  - - = 0 ,  = 0 ,  < 

where we have introduced expanded coordinates (2.6) and put 

W~(S) = --~--~fl(S)-l-~f2(s), (13'(~i,~2) = (2R*)-I(~.-I-~2 2) (7.2) 

These relations are completed by adding the asymptotic condition (2.12) obtained by matching on the 
basis of (2.2). 

The solution of the boundary-layer problem, whose boundary condition (7.1) involves the small para- 
meter e, will be constructed by using matched expansions, applying the approach described previously 
in [19] and the methods used in Section 5. Thus, as outer asymptotic representation for the function 
w(s; ~), proceeding by analogy with (5.9), we designate the function 

1 ( l +~ ~'  f(k;~)-~ +A(e;s) (7.3) 
k = - ~  

The constant A(e; s) is determined, along with the factor preceding the braces in (7.3), by assuming 
that the function (7.3) satisfies the asymptotic condition (2.12). Namely, in view of expansion (5.12), 
which holds for the function (5.9), we obtain the following representation of function (7.3) 

(7.4) 

Equating the terms written in the asymptotic formulae (7.4) and (2.12), we find that 

A(e;s)  - Y(S) ( ln l+cx  \ 2e +J°(s))  -l(JY)(s) (7.5) 

On the other hand, as I{[ --~ 0 we have 

~ ( s ; ~ ) =  y(s) l I{[ + A(e; s) + O([~l 2) (7.6) 

To construct the inner asymptotic representation ~W(s; 4) of the function w(s; 9) we introduce expanded 
coordinates 
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4 " 1~-1/2~ (7.7) 

The value of the exponent of ~ in (7.7) is chosen so as to equalize the orders of the terms on the right 
of the first inequality in boundary condition (7.1). 

The function W(s; 4) must be harmonic in the half-space 43 < 0 and satisfy on its boundary the 
following relation, which follows from boundary condition (7.1) when Eq. (7.7) is taken into account 

b ~  
~ ( S ;  ; )  --< [~2[W~(S) + (I):'lt(~l, ~2)], ~ 3  (S; 4) ~ 0 

~W 
(~/'(S, 4) -- E2[W~(S) + (I)*(~l, ~2)])'ff'~"( S, ; )  = 0, 

o~3 
4 3 = 0  

(7.8) 

The need to match the inner asymptotic representation °W(s; 4) with the outer asymptotic repre- 
sentation Y(s; 4) of the function w(s; 4) by (7.6) dictates the following behaviour of ~/'(s; 4) at 
infinity 

°W(s; 4) = -I~-I/2T(s) 1 14[ + a ( e ;  s) + o(141-2), 141 -~ o~ (7.9) 

Consider the simple layer potential 

1 ~ I ~*(s; 111, ]]2)d]lld~2 
W'*(s; 4) = -2"--~ -----~-~-- .'-S----"'~.2" 2 

°)r(s)J(41--1]l) +(;2--112) +43 
(7.10) 

with Hertz density (for the equations of Hertz's theory see, e.g. [20]): 

3Q*(S)Ja2 2 z 
q*(s,  ]]1' ]]2) = ~ /'/ * -- 41 -- 42 (7.11) 

zTta, 

distributed over the circular area c0~ (s) with centre at the origin and radius a. .  Function (7.10) satisfies 
the following boundary condition 

W*(s; ;1,42, 0) = 3Q~f)(2a~ - 41-42)2 2 (41, 42) e o)?(s) (7.12) 
16a. 

Outside the domain c0~ (s) the normal derivative of the potential (7.10) vanishes. On the other hand, 
we have the expansion 

1 0 * ( s )  
~ , ( s ;  4) = 2~ 141 + °(141-3)' t41 -~ oo (7.13) 

Thus, the inner asymptotic representation of the function W(s; 4) may be expressed in the form 

~ ( S ;  ; )  = e2°W'*($; ; )  +A(e ;  s) (7.14) 

Assuming that the matching condition (7.9) is satisfied and taking expansion (7.13) into account, we 
obtain 

7(S) = E5/2(21)-lQ*(s) (7.15) 

Next, by (7.12), function (7.14) is equal to the following expression in the contact area c0~ (s). 

23Q*(s)  + e 2 ~ ( 4 ~  +4~) 
W(s; 41, 42, 0) = A ( e ; s ) - e  ~ 16a, (7.16) 
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On the other hand, by boundary condition (7.8) and the notation (7.2), the following equality must hold 
in the contact area 

W ( S ;  ~ 1 '  ~ 2 '  0) = 82[W~(S) "l- (2R*)q(~ + ~)1 (7.17) 

Equating expressions (7.16) and (7.17), we obtain relations 

A(e; s) 23{)*(s) 2 , 
- = e w 0 ( s ) ,  

8a.  
1 _ 

2R* 16a 3 
(7.18) 

The radius of the contact area is found from the second equation of (7.18) 

-~ ~ ", 1/3 
a ,  = (~Q*(s)R*) (7.19) 

Substituting (7.19) into the first equation (7.18), we obtain 

2(9Q*(s)2") 1/3 2 . 
A(~; s ) - e  [ ~ ) = ~ w 0 (s) (7.20) 

Thus, all the arbitrariness admitted in the asymptotic constructions has been eliminated. To determine 
the functions y(s), Q*(s) andA(e; s) we now have the system of equations (7.5), (7.15) and (7.20). 

8. THE EQUATION FOR THE AVERAGE DENSITY OF LINEAR 
PRESSURES IN THE STRUCTURALLY NON-LINEAR PROBLEM 

Using Eq. (7.15), let us express the quantity Q*(s) in terms of 7(s), substitute the result into Eqs (7.5) 
and (7.20), and then eliminate the quantityA(e; s) from the system thus obtained. The yields the equation 

mT(s) 2/3 + y(s)(llnel - ln2 + C + J°(s)) + (Jy)(s) = -nw°(s) (8.1) 

where we have introduced the notation 

m = rc(9/2)l/3(16R) q/3 

The function w°(s) is defined by formula (2.10). 
The question of the solvability Eq. (8.1) and the construction of an asymptotic expansion of its solution 

as e ~ 0 (in view of the properties of the operator J) remains open. 
To obtain a rigorously solvable resultant equation for the function 7(s), we shall use a modified match- 

ing procedure [13]. Consider the asymptotic expansion (7.4) of the function ~(~; ~) at infinity. We apply 
a coordinate transformation inverse to (2.6) in formula (7.4), reverting from expanded coordinates 
to real coordinates, and then, using the resulting relation, expressthe matching condition (4.4) in the 
form 

Y(S)(ln r-f--+C) + A ( e ; s ) + r t  t e41 2-~1ST(t)dtR__~,~ - o(1), 7r:  O(4~), e - + 0  (8.2) 
F 

Now, equating the left-hand side of (8.2) to zero beneath the base of the punch for r = "/~l, we obtain 
an equation linking the quantitiesA(e; s) and 7(s), instead of Eq. (7.5). Thus, instead of (8.1) we obtain 

2 1 the following equation for the density 7(s) = 2(1 - v )E- P(s) of linear pressures 

my(s)2i3+y(s)(ln~_~E+c)+ls2=r JRo( s,Y(t)dt,):2 + I~l 2 = -?l;w°(s) (8.3) 

That this equation is solvable may be established by reducing it to a Hammerstein integral equation 
(see, e.g. [21]). 
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9. C O N C L U S I O N  

The function P(s) defines the contact pressure per unit length of the arc of F. The contact pressure 
developed under the base of the punch o)J~ is determined in expanded coordinates from the solution of 
the boundary-layer problem via formulae (2.13) and (7.11). 

The main results of this paper are Eqs (4.7) and (8.3) for the average density of contact pressures, 
inequality (3.8) and asymptotic formula (5.14) for the reduced logarithmic capacity of the contact area. 
The essential point when constructing the asymptotic forms for the structurally non-linear contact 
problem for the boundary layer was the construction of the outer asymptotic representation in the form 
(7.4). By applying a procedure worked out in [19, 22], Eq. (7.18) may be improved, which of course 
involves the need to modify the resultant equation (8.3). 

Note that Eqs (4.7) and (8.3) remain valid when F is a simple (non-self-intersecting) smooth open 
curve. However, a three-dimensional boundary layer is formed in the neighbourhood of the ends of 
the arc F. This topic has not been investigated for problems of the class under consideration. 

This results of this paper were reported at the Third All-Russian Conference on the Theory of 
Elasticity (Rostov-on-Don, October 2003). 

This research was supported financially by the Ministry of Industry, Science and Technology of the 
Russian Federation (MS-182.2003.01). 
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